A New Tree Cover Percentage Map in Eurasia at 500 m Resolution Using MODIS Data

نویسندگان

  • Toshiyuki Kobayashi
  • Tsend-Ayush Javzandulam
  • Ryutaro Tateishi
چکیده

Global tree cover percentage is an important parameter used to understand the global environment. However, the available global percent tree cover products are few, and efforts to validate these maps have been limited. Therefore, producing a new broad-scale percent tree cover dataset is valuable. Our study was undertaken to map tree cover percentage, on a global scale, with better accuracy than previous studies. Using a modified supervised regression tree algorithm from Moderate Resolution Imaging Spectroradiometer (MODIS) data of 2008, the tree cover percentage was estimated at 500 m resolution in Eurasia. Training data were created by simulation using reference data interpreted from Google Earth. We collected approximately 716 high-resolution images from Google Earth. The regression tree model was modified to fit those images for improved accuracy. Our estimation result was validated using 307 points. The root mean square error (RMSE) between estimated and observed tree cover was 11.2%, and the weighted RMSE between them, in which five tree cover strata (0%–20%, 21%–40%, 41%–60%, 61%–80%, and 81%–100%) were weighted equally, was 14.2%. The result was compared to existing global percent-scale tree cover datasets. We found that existing datasets had some pixels with estimation error of more than 50% and each map had different characteristics. Our map could be an alternative dataset and other existing datasets could be modified using our resultant map. OPEN ACCESS Remote Sens. 2014, 6 210

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Rangeland vegetation cover map and monitoring its changes in drought and wet periods using NDVI MODIS product (Case Study: Southern Rangelands of Yazd Province)

Knowledge of rangeland vegetation characteristics as well as factors affecting it in environmental planning, land management and sustainable development is very important. However, regional and up-to-date maps of pasture vegetation cover are not always available. In this study, in order to plot the vegetation cover percentage of the rangelands and monitor its changes in drought and wet periods,...

متن کامل

Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil

The paper investigated the application of MODIS data for mapping regional land cover at moderate resolutions (250 and 500 m), for regional conservation purposes. Land cover maps were generated for two major conservation areas (Greater Yellowstone Ecosystem—GYE, USA and the Pará State, Brazil) using MODIS data and decision tree classifications. The MODIS land cover products were evaluated using ...

متن کامل

Distance metric-based forest cover change detection using MODIS time series

More than 12 years of global observations are now available from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). As this time series grows, the MODIS archive provides new opportunities for identification and characterization of land cover at regional to global spatial scales and interannual to decadal temporal scales. In particular, the high temporal frequency of MODIS provides a ...

متن کامل

Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description

A new algorithm for snow cover monitoring at 250 m resolution based on Moderate Resolution Imaging Spectroradiometer (MODIS) images is presented. In contrast to the 500 m resolution MODIS snow products of NASA (MOD10 and MYD10), the main goal was to maintain the resolution as high as possible to allow for a more accurate detection of snow covered area (SCA). This is especially important in moun...

متن کامل

Subpixel burn detection in Moderate Resolution Imaging Spectroradiometer 500-m data with ARTMAP neural networks

[1] This paper presents an ARTMAP neural network approach for burn detection in Moderate Resolution Imaging Spectroradiometer (MODIS) data using two methods: discrete and continuous classifications. The study area covers the states of Idaho and Montana in the United States, where extensive fire events took place during the months of July and August in the year 2000. The proposed approach differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014